
Singaporean Journal Scientific Research (SJSR)
ISSN: 2231 - 0061Vol.3, No.2 pp.158 - 162
©Singaporean Publishing Inc. 2010
available at: : http://www.iaaet.org/sjsr

Clone Detection using Textual and Metric Analysis to figure out
allTypes of Clones
Kodhai.E1, Perumal.A2, and Kanmani.S3

1SMVEC, Dept. of Information Technology, Puducherry, India
Email: kodhaiej@yahoo.co.in

2SMVEC, Dept. of Computer Science, Puducherry, India.
 Email:perumal.sam@gmail.com

3PEC, Dept. of Information Technology, Puducherry, India.
Email:kanmani@pec.edu

Abstract - A Clone Detection approach is to find out the
reused fragment of code in any application to maintain
.Various types of clones are being identified by clone
detection techniques. Since clone detection was evolved,it
provides better results and reduces the complexity. A
different clone detection tool makes the detection process
easier and efficiently produces the results. In many
existing system, it mainly focuses on line by line detection
or token based detection to find out the clone in the
system. So it makes the system to take long time to
process the entire system. If the fragment of code are not
at exact code but the functionalities makes it similar to
each other. Then existing system doesn’t figure out the
clone of that type of clones in it. This paper proposes
combination of textual and metric analysis of a source
code for the detection of all types of clone in a given set of
fragment of java source code. Various semantics had
been formulated and their values were used during the
detection process. This metrics with textual analysis
provides less complexity in finding the clones and gives
accurate results
Keywords - Clone Detection, Metrics, complexity, semantics.

1. INTRODUCTION

In computer programs, we can also have different types
of redundancy. We should note that not every type of
redundancy is harmful. There are different forms of
redundancy in software. Software comprises both programs
and data. Sometimes redundant is used also in the sense of
superfluous in the software engineering literature. Redundant
code is also often misleadingly called cloned code although
that implies that one piece of code is derived from the other
one in the original sense of this word. Although cloning leads
to redundant code, not every redundant code is a clone. There
may be cases in which two code segmentsthat are no copy of
each other just happen to be similar or even identical by
accident. Also, there may be redundant code that is
semantically equivalent but has a completely different
implementation

Clones are segments of code that are similar according
to some definition of similarity. —Ira Baxter, 2002.

According to this definition, there can be different
notions of similarity. They can be based on text, lexical or

syntactic structure, or semantics. They can even be similar if
they follow the same pattern, that is, the same building plan.
Instances of design patterns and idioms are similar in that
they follow a similar structure to implement a solution to a
similar problem. Semantic difference relates to the
observable behavior. A piece of code, A, is semantically
similar to another piece of code, B, if B subsumes the
functionality of A, in other words, they have “similar” pre
and post conditions. Unfortunately, detecting such semantic
redundancy is undecidable in general although it would be
worthwhile as you can often estimate the number of
developers of a large software system by the number of hash
table or list implementations you find. Another definition of
redundancy considers the program text: Two code fragments
form a redundancy if their program text is similar. The two
code fragments may or may not be equivalent semantically.
These pieces are redundant because one fragment may need
to be adjusted if the other one is changed. If the code
fragments are executable code, their behavior is not
necessarily equivalent or subsumed at the concrete level, but
only at a more abstract level. For instance, two code pieces
may be identical at the textual level including all variable
names that occur within but the variable names are bound to
different declarations in the different contexts. Then, the
execution of the code changes different variables. The
common abstract behavior of the two code segments is to
iterate over a data structure and to increase a variable in each
step. Program-text redundancy is most often the result of
copy&paste; that is, the programmer selects a code fragment
and copies it to another location. Sometimes, these
programmers are forced to copy because of limitations of the
programming language. In other cases, they intend to reuse
code. Sometimes these clones are modified slightly to adapt
them to their new environment or purpose. Several authors
report on 7-23% code duplication [4, 5, 6]; in one extreme
case even 59%Clearly, the definition of redundancy,
similarity, and cloning in software is still an open issue.

There are basically two kinds of similarities between
two code fragments. Two code fragments can be similar
based on the similarity of their program text or they can be
similar in their functionalities without being textually
similar. The first kind of clones is often the result of copying
a code fragment and then pasting to another location. In this

159

Published: Singaporean Publishing

Clone Detection using Textual and Metric Analysis to figure out all Types of Clones

section, we consider clone types based on the kind of
similarity two code fragments can have:
Textual Similarity: Based on the textual similarity we
distinguish the following types of clones :
 Type I: Identical code fragments except for variations in

whitespace (may be also variations in layout) and
comments.

 Type II: Structurally/syntactically identical fragments
except for variations in identifiers, literals, types, layout
and comments.

 Type III: Copied fragments with further modifications.
Statements can be changed, added or removed in
addition to variations in identifiers, literals, types, layout
and comments.

Functional Similarity: If the functionalities of the two code
fragments are identical or similar and referred as Type IV
clones.
 Type IV: Two or more code fragments that perform the

same computation but implemented through different
syntactic variants.
The results of the code clone detection are usually given

as clone pairs/clone clusters along with their
location/occurrence.
 Clone Pair (CP):pair of code portions / fragments

which are identical or similar to each other.
 Clone Cluster (CC):the union of all clone pairs which

have code portions in common
Auspiciously, many techniques for the detection of code

clones have been proposed. They show that lightweight text-
based techniques can find clones with high accuracy and
confidence, but detected clones often do not correspond to
appropriate syntactic units [8]. Parser based syntactic (AST-
based) techniques, find syntactically meaningful clones but
tend to be more heavyweight, requiring a full parser and sub-
tree comparison method. An Incremental detection technique
detects clones in less time in each revision separately [2].
Moreover, it only detectsthe similar clones of type 1. The
complexity of all the methods is high and this can be reduced
with the computed metrics values.

In this paper, a novel code clone detection method using
textual analysis and metrics-based approach has been
proposed. It has also been implemented as a tool using Java.
The tool efficiently and accurately detects type-1, type-2,
type-3 and type-4 clones found in source codes at method
level in JAVA open source code projects. This paper
contains four major sections. Section II describes about the
related research work are currently implemented in various
domain. Section III describes the implementation of the
proposed method. Finally, Section III concludes the paper.

2. RELATED WORK

Software clone detection is an active field of research.
This section summarizes research in clone detection.

Although most consider code clones to be identical or
near identical fragments of source code [28, 29], code clones
have no consistent or precise definition in the literature.
Indeed, a clone" has been defined operationally based on the

computation of individual clone detectors. Clone detectors
can be grouped into four basic approaches, each of which
uses a different representation of source code and different
algorithms for comparing the representation of potential
clones.

Textual comparison: whole lines are compared to each
other textually [15] using hashing for strings. The result may
be visualized as a dotplot, where each dot indicates a pair of
cloned lines. Consecutive duplicated lines can be spotted as
uninterrupted diagonals or displaced diagonals in the dotplot
[12].

Token comparison: Baker’s technique is also a line
based comparison where the token sequences of lines are
compared efficiently through a suffix tree. First, each token
sequence for whole lines is summarized by a so called
functor that abstracts of concrete values of identifiers and
literals. The functor characterizes this token sequence
uniquely. Concrete values of identifiers and literals are
captured as parameters to this functor. An encoding of these
parameters abstracts from their concrete values but not from
their order so that code fragments may be detected that differ
only in systematic renaming of parameters. Two lines are
clones if they match in their functors and parameter
encoding. The functors and their parameters are summarized
in a trie1 that represents all suffixes of the program in a
compact fashion. Every branch in this trie represents
program suffixes with common beginnings, hence, cloned
sequences. Kamiya et al. increase recall for superfluous
different, yet equivalent sequences by normalizing the token
sequences [16].Because syntax is not taken into account; the
found clones may overlap different syntactic units, which
cannot be replaced through functional abstraction. Either in a
preprocessing [10, 13] or post-processing [14, 16] step,
clones that completely fall in syntactic blocks can be found if
block delimiters are known.

Metric comparison: Merlo et al. gathers different
metrics for code fragments and compares these metric
vectors instead of comparing code directly [1, 11, 18, 20,
21]. An allowable distance (for instance, Euclidean distance)
for these metric vectors can be used as a hint for similar
code.

Comparison of abstract syntax trees (AST): Baxter et
al. partition sub trees of the abstract syntax tree of a program
based on a hash function and then compare sub trees in the
same partition through tree matching (allowing for some
divergences) [9]. A similar approach was proposed earlier by
Yang [22] using dynamic programming to find differences
between two versions of the same file.

Comparison of program dependency graphs: control and
data flow dependencies of a function may be represented by
a program dependency graph; clones may be identified as
isomorphic sub graphs [29, 30].Finally, metric-based clone
detectors [31, 32, 33] compare various software metrics.
These clone detectors find clones in a particular syntactic
granularity such as a class, a function, or a method.

160

Published: Singaporean Publishing

Clone Detection using Textual and Metric Analysis to figure out all Types of Clones

3. PROPOSED METHOD
The proposed method is implemented as a tool in java.

The system architecture of the tool is as shown in Fig. 1. The
tool developed initially parses through the given input source
code and identifies the various methods present. Then a built-
in hand-coded parser [6] parses the various methods using an
island-driven approach [6]. Having identified the methods,
the various metrics formulated are computed for each method
and the metrics values for each method are stored in the
database. With the help of the metric values the possible
potential clone pairs are extracted and are further put forth
for the textual comparison.

The pairs that prove similar in the textual comparison
are listed as the clones. The detection tool thus developed is
lightweight i.e. it doesn’t employ any external parsers and
requires less overhead compared to the other methods. The
process of clone detection has been divided into a number of
phases. These phases include Input & Pre- Processing,
Template Conversion, Metrics Computation, and finally the
detection of the type-1, type-2, type-3 and type-4 cloned
methods.

A. Select Input Project

This phase includes the selecting input project, source
code standardization and the normalization. Selecting the
project involves the concatenation of all the files of the same
project into a single large file for an effective parsing. In the
next step the integrated file is parsed for the removal of
comments, whitespaces and pre-processor statements. Source
code is re-structured to a standard format which is important
for establishing similarity of the cloned fragments. These
steps are very similar to normalization procedures and yield a
significant gain in the recall.

Figure 1. System Architecture of the developing tool

B. Template Conversion

Template conversion is nothing but the
transformation of the inputted source code into a pre-defined
set of statements or conversion into a standard intermediary
form. For example, renaming of data types, variables,

function names, etc., as in Fig. 2. This type of format called
the ‘template’ is used in the textual comparison of the
selected candidates while detecting the type-2 cloned
methods where as per the definition, function identifiers,
variable names, types etc., are edited during the cloning
process and mere textual comparison would not suffice.
Once template conversion is getting over the source files and
template file is stored in the database for applying metrics.

intsim_comp(avg,marks,tot,cou
nt)
{
float avg;
int marks[];
double tot[];
int count;
total=mark[i]+mark[i+1];
avg=total/count;
for(inti=0;i<count;i++)
{
if(avg>=85)
System.out.println(“Grade
A”);
}
System.out.println(“Thank
you”);
}

DAT
FUN_NAME(X,X,X,X,
X)
DAT X;
DAT X;
DAT X;
DAT X;
DAT X;
{
LOOP
{
IF
PRINT
}
PRINT
}

Figure 2.Template

C.Apply Metrics

A set of 12 existing method level metrics are used for
the detection of type-1, type-2, type-3 and type-4 clone
methods. They are as follows:
1) No. of effective lines of code in each method.
2) No. of arguments passed to the method.
3) No. of function calls in each method.
4) No. of local variables declared in each method.
5) No. of conditional statements in each method.
6) No. of looping statements in each method.
7) No. of return statements in each method.
8) No. of function calling in each method
9) No. of inheritance in each method
10) No. of virtual functions in each method
11) No. of overloading constructor in each method
12) No. of overriding functions in each method

The metrics are computed for each of the methods
identified and the values are stored in a database. The various
metric values for the code fragment. The descriptive statistics
of the metric values obtained for the various methods.
Having computed the metric values, the method pairs with
equal or similar set of values are identified by comparison of
the records in the database. The short-listed set of candidates
is then textually compared to be confirmed as clone pairs.
D. Finding Clone Types, Pairs and Clusters

The identification of the potential clone pairs is done by
taking up a line by line comparison of the standardized and
normalized source code for type-1 clone methods while
comparison of the template methods for type-2 clone

Select
Input

Project

Template
Conversio

n

DB

Apply
Metrics

Find
Clone
Types

Find
Clone

Clusters

Find
Clone
Pairs

161

Published: Singaporean Publishing

Clone Detection using Textual and Metric Analysis to figure out all Types of Clones

methods. There is some modifications in the fragments but
there is some similarities means it should be declared as
type-3 by matching template with the exact code. Then
fragments are completely different but produce similar
output, then it is declared as type-4 clone. The exact and
corresponding matches in both cases are declared as cloned
methods of the corresponding type[7,9]. The identified
cloned methods are then clustered separately for each type
and the clusters are uniquely numbered. Clustering gives a
clear image of how the methods were cloned and helps to
provide an easier review process.

4. CONCLUSIONS

The proposed paper uses a light weight technique to
detect functional clones with the computation of metrics
based technique with the textual analysis technique. By
implementing various metrics in this paper gives various
benefits to improve the precision and recall and also reducing
the total comparison overhead. Various metrics and textual
comparison is performed over different fragments. And also
plan obtain higher recall and precision value. Currently
working on the implementation part of this paper in finding
and classifying the functional clones in JAVA.

REFERENCES

[1] Kodhai.E,Kanmani.S, Kamatchi.A,Radhika.R,
Detection of Type-1 and Type-2 Clone Using Textual
Analysis and Metrics in ITC,2010.

[2] Chanchal K. Roy, James R. Cordy, NICAD:
Accurate Detection of Near-Miss Intentional Clones
using Flexible Pretty-Printing and Code
Normalization in ICPC, pp 172-18, 2008

[3] B. Baker. On Finding Duplication and Near-
Duplication in Large Software Systems. In WCRE, pp.
86-95, 1995

[4] C. Kapser and M. Godfrey.”Cloning Considered
Harmful” Considered Harmful. In WCRE, pp. 19 -28,
2006.

[5] Z. Li, S. Lu, S. Myagmar and Y. Zhhou. CP-Miner:
Finding Copy- Paste and Related Bugs in Large- -
Scale Software Code. IEEE TSE, 32(3):176-192,
2006.

[6] F.V. Rysselberghe and S. Demeyer. . Evaluating
Clone Detection Techniques.In ELISA, 12 pp., 2003.

[7] Merlo, Detection of Plagiarism in University Projects
using Metrics based Spectral Similarity. In the
Dagstuhl Seminar: Duplication, Redundancy, and
Similarity in Software-2007

[8] Rainer Koschke, RaimarFalke, PierreFrenzel, Clone
Detection using Abstract Syntax Suffix Trees–
Working Conference on Reverse Engineering – 2006.

[9] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier.Clone Detection Using Abstract Syntax Trees.
In ICSM, 1998.

[10] J. R. Cordy, T. R. Dean, and N. Synytskyy. Practical
language-independent detection of near-miss clones.In
CASCON. IBM Press, 2004.

[11] G. Di Lucca, M. Di Penta, and A. Fasolino.An
approach to identify duplicated web pages.In
COMPSAC, 2002.

[12] S. Ducasse, M. Rieger, and S. Demeyer.A Language
Independent Approach for Detecting Duplicated Code.
In ICSM,1999.

[13] D. Gitchell and N. Tran. Sim: a utility for detecting
similarity in computer programs. In SIGCSE.ACM
Press, 1999.

[14] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K.
Inoue.On software maintenance process improvement
based on code clone analysis. In International
Conference on Product Focused Software Process
Improvement, volume 2559 of Lecture Notes In
Computer Science. Springer, 2002.

[15] J. H. Johnson. Identifying redundancy in source code
usingfingerprints.In CASCON. IBM Press, 1993.

[16] T. Kamiya, S. Kusumoto, and K. Inoue.CCFinder: A
Multi-Linguistic Token-based Code Clone Detection
System for Large Scale Source Code. IEEE
Transactions on SoftwareEngineering, 28(7):654–670,
2002.

[17] R. Komondoor and S. Horwitz.Using slicing to
identify duplication in source code.In Proc. Int.
Symposium on StaticAnalysis, 2001.

[18] K. Kontogiannis, R. D. Mori, E. Merlo, M. Galler, and
M. Bernstein.Pattern matching for clone and concept
detection. Automated Software Engineering,
3(1/2):79–108, 1996.

[19] J. Krinke. Identifying Similar Code with Program
Dependence Graphs.In WCRE, 2001.

[20] B. Lagu¨e, D. Proulx, J. Mayrand, E. M. Merlo, and J.
Hudepohl.Assessing the benefits of incorporating
function clone detection in a development process.In
ICSM, 1997.

[21] F. Lanubile and T. Mallardo. Finding function clones
in web applications. In CSMR, 2003.

[22] W. Yang. Identifying syntactic differences between
two programs.Software–Practice and Experience,
21(7):739–755, 1991.

[23] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond
templates: a study of clones in the STL and some
general implications. In Proc. of the Int'l Conf. on
Software Engineering, pages 451-459, 2005.

[24] T. Kamiya, S. Kusumoto, and K. Inoue.CCFinder: A
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans.
Software Eng., 28(7):654{670, 2002.

[25] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.

Refactoring support based on code clone analysis. In
Proc. of the Product Focused Software Process
Improvement Int'l Conference, pages 220{233, 2004.

[26] J. H. Johnson. Identifying redundancy in source code
using _ngerprints.In Proc. of the Conference of the
Centre for Advanced Studies on Collaborative
Research, pages 171{183. IBM Press, 1993.

162

Published: Singaporean Publishing

Clone Detection using Textual and Metric Analysis to figure out all Types of Clones

[27] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on
the automatic detection of function clones in a
software system using metrics. In Proc. of the Int'l
Conf. on Software Maintenance, page 244, 1996.

[28] E. Merlo, G. Antoniol, M. D. Penta, and V. F. Rollo.
Linear complexity object-oriented similarity for clone
detection and software evolution analyses.In Proc.Of
the Int'l Conf. on Software Maintenance, pages
412{416, 2004.

